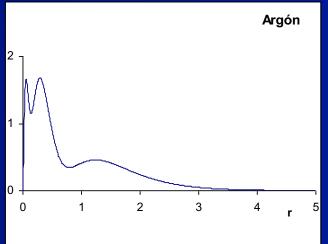
2. Las propiedades periódicas de los elementos

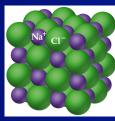
Andrés Cedillo, AT-250 cedillo@xanum.uam.mx www.fqt.izt.uam.mx/cedillo

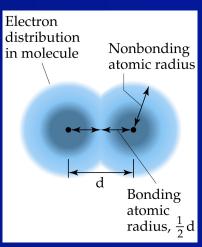

2. Propiedades periódicas de los elementos

- 2.1. El tamaño de los átomos
- 2.2. La energía de ionización y la afinidad electrónica
- 2.3. Metales, no metales y metaloides
- 2.4. Las tendencias en los grupos de la tabla periódica

2.1. El tamaño de los átomos

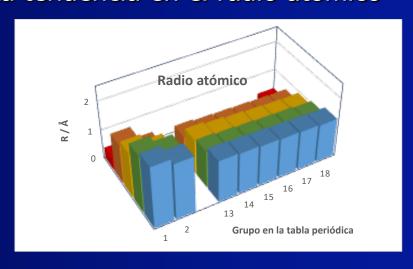
- La densidad de probabilidad radial
 - Capas
 - Finita siempre
 - Frontera?


Ar: $1s^2 2s^2 2p^6 3s^2 3p^6$



2.1. El tamaño de los átomos ...2

- Algunos métodos basados en la geometría
 - Moléculas diatómicas
 - Sólidos
 - Metales
 - Cristales iónicos

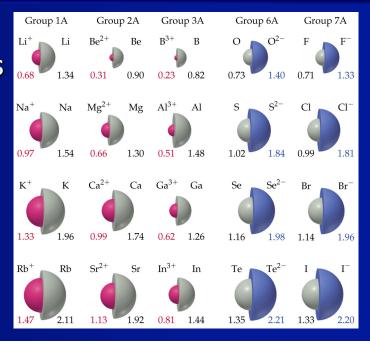


2.1. El tamaño de los átomos ...3

■ La tendencia en el radio atómico

2.1. El tamaño de los átomos ...4

- En un grupo
 - Más partículas: mayor tamaño
- En un periodo
 - Depende de la carga nuclear efectiva
 - Al llenar una subcapa de valencia los electrones de esta subcapa no apantallan totalmente al núcleo, ya que no son electrones internos:

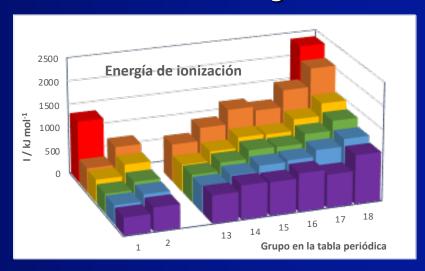

Z se incrementa en uno;

S se incrementa en menos de uno;

 $=> Z_{ef} = Z - S$ crece y el radio disminuye.

2.1. El tamaño de los átomos ...5

El tamaño de los iones


2.2. Energía de ionización y afinidad electrónica

- La energía de ionización (I)
 - Energía requerida para remover un electrón de un átomo o ion gaseoso aislado.

$$K (g) \rightarrow K^{+} (g) + e^{-}$$

 $I = E[K^{+} (g)] - E[K (g)]$

– En un átomo neutro o en un catión siempre es positiva ($\Delta E > 0$, energía recibida).

■ La tendencia en la energía de ionización

2.2. Energía de ionización y afinidad electrónica ...3

 La energía de ionización sucesiva es mayor cada vez.

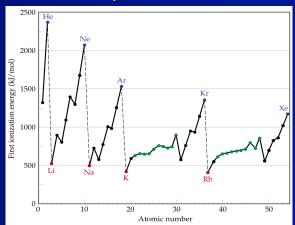
$$I_1 < I_2 < I_3 \dots$$

Ejemplo. Ca: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

Ca
$$(g) \rightarrow$$
 Ca⁺ (g) + e ⁻ $\Delta E = I_1 = 590 \text{ kJ mol}^{-1}$
Ca⁺ $(g) \rightarrow$ Ca²⁺ (g) + e ⁻ $\Delta E = I_2 = 1145 \text{ kJ mol}^{-1}$
Ca²⁺ $(g) \rightarrow$ Ca³⁺ (g) + e ⁻ $\Delta E = I_3 = 4912 \text{ kJ mol}^{-1}$

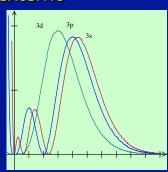
$$I_3 >> I_2 > I_1$$

 Hay un cambio grande al romper la configuración electrónica de un gas noble.


	I_1	I_2	I ₃	I_4	<i>I</i> ₅	I ₆	<i>I</i> ₇	<i>I</i> ₈
Na	496	4560						
Mg	738	1450	7730					
Al	578	1820	2750	11600				
Si	786	1580	3230	4360	16100			
Р	1012	1900	2910	4960	6270	22200		
S	1000	2250	3360	4560	7010	8500	27100	
Cl	1251	2300	3820	5160	6540	9460	11000	33600

Valores en kJ mol-

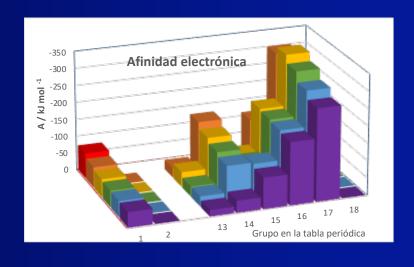
2.2. Energía de ionización y afinidad electrónica ...5


- La carga nuclear efectiva
 - Al aumentar la atracción del núcleo sobre el electrón más externo, la energía de ionización es más grande.
 - Las tendencias de la carga nuclear efectiva y de la energía de ionización son similares.
 - o En un periodo aumenta hacia la derecha.
 - En un grupo disminuye hacia abajo.

 Las irregularidades en la tendencia generalmente se deben a un cambio de capa o subcapa.

2.2. Energía de ionización y afinidad electrónica ...7

- La configuración electrónica de los cationes
 - Se extrae el electrón más débilmente unido.
 - Menor atracción nuclear = más externo
 - En los metales de transición
 - Orden de llenado: ns, (n-1)d
 - Orden de remoción : ns, (n-1)d


- La afinidad electrónica (A)
 - Cambio energético de un átomo o ion gaseoso aislado por aceptar un electrón.

$$F(g) + e^{-} \rightarrow F^{-}(g)$$

 $A = E[F^{-}(g)] - E[F(g)]$

- Normalmente es muy negativa para algunos no metales.
- Abrir una capa nueva requiere de mucha energía y la afinidad electrónica es positiva.

2.2. Energía de ionización y afinidad electrónica ...9

La tendencia en la afinidad electrónica

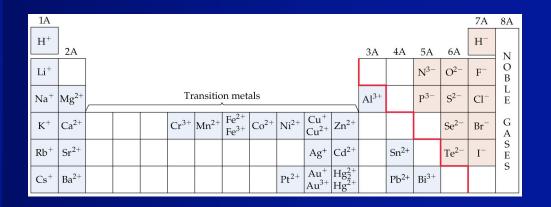
2.3. Metales, no metales y metaloides

	1 4						Incr	easin	g me	etallic	cha:	racte	r					
	1A 1																	8A
	1	Ĭ																18
ter	Ĥ	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	2 He
зас	3	4	ĺ										5	6	7	8	9	10
character	Li	Be											B	c	Ń	ő	F	Ne
	11	12	3B	4B	5B	6B	7B		8B		1B	2B	13	14	15	16	17	18
Increasing metallic	Na	Mg	3	4	5	6	7	/8	9	10	11	12	Al	Si	P	S	Cl	Ar
eta	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
E	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
20	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
ısı	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
reg	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
nc	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
— ↓	87 Fr	88 Ra	103 Lr	104 R f	105 Db	106	107 Bh	108 Hs	109 Mt	110	111	112		114		116		
,	FF	Ka	Lr	KI	Db	Sg	Dn	ns	IVIT				J		J			
		1		57	58	59	60	61	62	63	64	65	66	67	68	69	70	1
		Metal	s	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	
				89	90	91	92	93	94	95	96	97	98	99	100	101	102	
		Metal	lloids	Ac	Th	Pa	Ü	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	
		,,						_										1
		Nonn	netals															

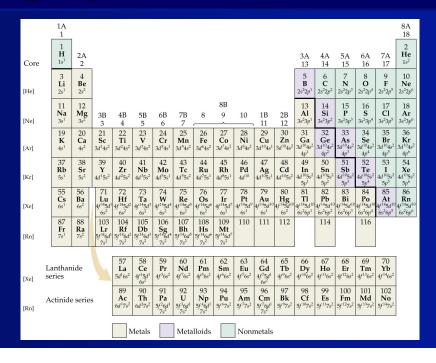
2.3. Metales, no metales y metaloides ... 2

- Las características de los metales
 - Brillo
 - Buena conductividad térmica y eléctrica
 - Maleables y dúctiles
 - Sus óxidos forman disoluciones básicas
 - Comúnmente existen como cationes

 $Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$


2.3. Metales, no metales y metaloides ...3

- Las características de los no metales
 - Sin brillo, varios colores
 - Mala conductividad térmica y eléctrica
 - Quebradizos (tanto duros como blandos)
 - Sus óxidos forman disoluciones ácidas
 - Comúnmente existen como aniones


 $P_4O_{10}(s) + H_2O(l) \rightarrow 4H_3PO_4(aq)$

2.3. Metales, no metales y metaloides ...4

Los iones atómicos más comunes

2.4. Las tendencias de en los grupos de la tabla

2.4. Las tendencias en los grupos de la tabla...2

- Las combinaciones entre diferentes elementos
 - Entre no metales
 - Compuesto molecular, enlace covalente
 - Entre metales y no metales
 - Compuesto iónico, enlace iónico
 - Entre metales
 - Aleación, enlace metálico

2.4. Las tendencias en los grupos en la tabla...3

 Algunas propiedades de los elementos de grupo 18

	configuración electrónica	<i>T</i> _{ebullición} / K	densidad / g L ⁻¹	radio atómico / Å	I ₁ /kJ mol ⁻¹
He	1 <i>s</i> ²	4.2	0.18	0.32	2372
Ne	1s ² 2s ² 2p ⁶	27.1	0.90	0.69	2081
Ar	[Ne] 3 <i>s</i> ² 3 <i>p</i> ⁶	87.3	1.78	0.97	1521
Kr	[Ar] 4s ² 3d ¹⁰ 4p ⁶	120	3.75	1.10	1351
Xe	[Kr] 5 <i>s</i> ² 4 <i>d</i> ¹⁰ 5 <i>p</i> ⁶	165	5.90	1.30	1170
Rn	[Xe] $6s^2 4f^{14} 5d^{10} 6p^6$	211	9.73		1037

2.4. Las tendencias en los grupos en la tabla...4

■ Los grupos 1 y 2

	configuración electrónica	7 _{fusión} / °C	densidad / g cm ⁻³	radio atómico / Å	I ₁ /kJ mol ⁻¹
Li	[He] 2 <i>s</i> ¹	181	0.53	1.34	520
Na	[Ne] 3 <i>s</i> ¹	98	0.97	1.54	496
K	[Ar] 4 <i>s</i> ¹	63	0.86	1.96	419
Rb	[Kr] 5 <i>s</i> ¹	39	1.53	2.11	403
Cs	[Xe] 6 <i>s</i> ¹	28	1.88	2.60	376
Ве	[He] 2 <i>s</i> ²	1287	1.85	0.90	899
Mg	[Ne] 3 <i>s</i> ²	650	1.74	1.30	738
Ca	[Ar] 4 <i>s</i> ²	842	1.54	1.74	590
Sr	[Kr] 5 <i>s</i> ²	777	2.63	1.92	549
Ва	[Xe] 6 <i>s</i> ²	727	3.51	2.15	503

2.4. Las tendencias en los grupos en la tabla...5

■ Los grupos 16 y 17

	configuración electrónica	7 _{fusión} / °C	densidad / g cm ⁻³	radio atómico / Å	I ₁ /kJ mol ⁻¹
0	[He] 2 <i>s</i> ² 2 <i>p</i> ⁴	-218	0.00143	0.73	1314
S	[Ne] 3s ² 3p ⁴	115	1.96	1.02	1000
Se	[Ar] 3 <i>d</i> ¹⁰ 4 <i>s</i> ² 4 <i>p</i> ⁴	221	4.82	1.16	941
Те	[Kr] 4 <i>d</i> ¹⁰ 5 <i>s</i> ² 5 <i>p</i> ⁴	450	6.24	1.35	869
Ро	[Xe] 4f ¹⁴ 5d ¹⁰ 6s ² 6p ⁴	254	9.2	1.9	812
F	[He] 2 <i>s</i> ² 2 <i>p</i> ⁵	-220	0.00169	0.71	1681
Cl	[Ne] 3 <i>s</i> ² 3 <i>p</i> ⁵	-102	0.00321	0.99	1251
Br	[Ar] 3 <i>d</i> ¹⁰ 4 <i>s</i> ² 4 <i>p</i> ⁵	-7.3	3.12	1.14	1140
I	[Kr] 4 <i>d</i> ¹⁰ 5 <i>s</i> ² 5 <i>p</i> ⁵	114	4.93	1.33	1008