Métodos matemáticos para fisicoquímica (214651)

Andrés Cedillo (AT-250)

Objetivos

- Profundizar los conocimientos en las matemáticas necesarias para el estudio de la estructura electrónica
- Adquirir destreza en el planteamiento y la solución de algunos problemas relacionados con la estructura electrónica

Temario

1. Transformadas integrales

Transformada de Fourier Transformada de Laplace Operadores integrales

2. Ecuaciones diferenciales ordinarias

Ecuaciones lineales homogéneas Ecuaciones lineales no homogéneas Función de Green Algunas propiedades generales

3. Soluciones en series

Solución alrededor de un punto ordinario Solución alrededor de un punto singular regular Segunda solución Soluciones polinomiales Ecuaciones de Legendre y de Bessel

4. Métodos de valores propios

Operadores adjuntos y hermitianos Ecuaciones de Sturm-Liouville Superposición de funciones propias Función de Green

5. Ecuaciones integrales

Tipos de ecuaciones integrales Algunos métodos de solución Series de Neumann Método de Fredholm Problemas de Schmidt-Hilbert

6. Cálculo variacional

Ecuación de Euler -Lagrange Variación condicionada Principios variacionales Problemas de valores propios

7. Cálculo funcional

Tipos de funcionales Problemas variacionales Derivadas funcionales y series de Taylor Aplicaciones en estructura electrónica

8. Ecuaciones diferenciales parciales (opcional)

Método de separación de variables Superposición de soluciones separadas Separación en coordenadas polares Métodos con transformadas integrales

Bibliografía

Texto:

KF Riley, MP Hobson and SJ Bence Mathematical Methods for Physics and Engineering Cambridge, 1997

Referencias adicionales:

Arfken & Weber, Mathematical Methods for physicists, Academic, 4th ed, 1995. (1-6,8)

Boas, Mathematical Methods in the Physical Sciences, Wiley, 2nd ed, 1983. (1-4,6,8)

Byron & Fuller, Mathematics of Classical and Quantum Physics, Dover, 1992. (1,4-6,8)

Kreyszig, Advanced Engineering Mathematics, Wiley, 1983. (1-4,8)

Sokolnikoff & Redheffer, Mathematics of Physics and Modern Engineering, McGraw, 1958. (1-4,8)

Greenberg, Advanced Engineering Mathematics, Prentice, 2nd ed, 1998. (1-4,8)

Dennery & Krzywicki, Mathematics of Physicists, Dover, 1996. (1-4,8)

Hildebrand, Methods of Applied Mathematics, Dover, 1992. (5,6)

Wallace, Mathematical Analysis of Physical Problems, Dover, 1984. (1,4-5,8)

Evaluación

Los problemas se entregarán en la sesión siguiente y no se contabilizarán problemas atrasados. La calificación será el promedio de problemas correctos con respecto al total (aprox. 100).

Escala de calificaciones

MB: 87-100 B: 74-86 S: 60-73 NA: 0-59

Trimestre 00-I, grupo CQ13

Horario: Ma, Ju 8:45-11:00 Asesoria: Lu, Mi, Vi 9:00-9:30

Requisitos

Cálculo diferencial e integral

Numeros complejos y funciones transcendentes

Series, suma de sucesiones, convergencia y series de Taylor

Cálculo de varias variables: derivadas parciales e integrales múltiples

Algebra de vectores y matrices

Espacios vectoriales

Análisis vectorial: operadores diferenciales vectoriales y teoremas integrales

Series de Fourier

Ecuaciones diferenciales de primer orden

Ver por ejemplo:

Edwards y Penney, Cálculo con geometría analítica

Edwards y Penney, Ecuaciones diferenciales

Courant & John, An introduction to calculus & analysis, vols I and II.

Boas, Kreyszig, Sokolnikoff, Greenberg, Wallace