... machine5.1
As returned by util_hostname() which maps to the output of the command hostname on Unix workstations.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... separate5.2
This is because on true shared-memory machines there is no choice but to allocate GAs from within a shared-memory segment, which is managed differently by the operating system.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... sets5.3
Complex objects are stored using a structured naming convention that is not matched by a simple wild card.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... notation5.4
The notation lo:hi:inc denotes the integers lo, lo+inc, lo+2*inc, ..., hi
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... simulation5.5
If theory is ``md'' this is not a QM/MM simulation and will result in an appropriate error
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... charge5.6
The charge directive, in conjunction with the charges of atomic nuclei (which can be changed via the geometry input, cf. Section 6.3), determines the total number of electrons in the chemical system. Therefore, a charge n specification removes "n" electrons from the chemical system. Similarly, charge -n adds "n" electrons.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... processed6.1
For periodic systems, there are additional keywords within this directive (not yet documented), so having a keyword for the group name is useful.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... contracted7.1
Generally contracted meaning that the same primitive, Gaussian functions are contracted into multiple contracted functions using different contraction coefficients. Reuse of the radial functions increases the efficiency of integral generation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... functions7.2
An $sp$ shell is two-component general contraction. However, the first component specifies an $s$ shell and the second a $p$ shell. Again, reuse of the radial functions increases the efficiency of integral generation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Christiansen8.1
l. F. Pacios and P. A. Christiansen, J. Chem. Phys. 82, 2664 (1985)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Kroll9.1
M. Douglas and N. M. Kroll, Ann. Phys. (N.Y.) 82, 89 (1974)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Hess9.2
B.A. Hess, Phys. Rev. A 32, 756 (1985); 33, 3742 (1986)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Dyall9.3
K. G. Dyall, J. Chem. Phys. 100, 2118 (1994)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... level9.4
K. G. Dyall, J. Chem. Phys. 106, 9618 (1997); K. G. Dyall and T. Enevoldsen, J. Chem. Phys. 111, 10000 (1999).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... operators9.5
B.A. Hess, Phys. Rev. A 32, 756 (1985)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... operators9.6
B.A. Hess, Phys. Rev. A 33, 3742 (1986)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...osch9.7
O.D. Häberlen, N. Rösch, Chem. Phys. Lett. 199, 491 (1992)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Hirao9.8
T. Nakajima and K. Hirao, Chem. Phys. Lett. 329, 5111 (2000); T. Nakajima and K. Hirao, J. Chem. Phys. 113, 7786 (2000)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...$(6 7 8 9)$10.1
The cyclic permutation $(6 7 8 9)$ maps the ordered list 6 7 8 9 into 9 6 7 8.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... SCF10.2
This can be seen by considering a one-electron approximation to the closed-shell RHF Hessian in canonical orbitals, $A_{ia,jb} = 4 \delta_{ij} \delta_{ab}
(\epsilon_a - \epsilon_i)$. Similarly, the level shift should be twice as large for UHF.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... scheme11.1
B.I. Dunlap, J.W.D. Connolly and J.R. Sabin, J. Chem. Phys. 71, 4993 (1979)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Alder11.2
D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... subspace11.3
P. Pulay, Chem. Phys. Lett. 73, 393 (1980) and P. Pulay, J. Comp. Chem. 3, 566 (1982)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...Level-Shifting11.4
M.F. Guest and V.R. Saunders, Mol. Phys. 28, 819 (1974)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... in11.5
A. D. Rabuck and G. E. Scuseria, J. Chem. Phys 110,695 (1999)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... components11.6
The subroutine for the Lebedev grid was derived from a routine supplied by M. Causà of the University of Torino and from the grid points supplied by D.N. Laikov from Moscow State University.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... below.11.7
V.I. Lebedev and D.N. Laikov, Doklady Mathematics 366, 741 (1999).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... scheme14.1
B.I. Dunlap, J.W.D. Connolly and J.R. Sabin, J. Chem. Phys. 71, 4993 (1979)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... systems14.2
J.E. Jaffe, A.C. Hess, J. Chem. Phys. 105, 10983 (1996)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Alder14.3
D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... scheme14.4
H.J. Monkhorst and J.D. Pack, Phys. Rev. B. 13, 5188 (1976).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... shifting''14.5
M.F. Guest and V.R. Saunders, Mol. Phys. 28, 819 (1974)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... (CIS),15.1
J. B. Foreman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... (TDDFT),15.2
C. Jamorski, M. E. Casida, and D. R. Salahub, J. Chem. Phys. 104, 5134 (1996); R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996); R. Bauernschmitt, M. Häser, O. Treutler, and R. Ahlrichs, Chem. Phys. Lett. 264, 573 (1997).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... TDDFT.15.3
S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... problem).15.4
E. R. Davidson, J. Comput. Phys. 17, 87 (1975); J. Olsen, H. J. Aa. Jensen, and P. Jørgensen, J. Comput. Phys. 74, 265 (1988).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... reference.15.5
D. Maurice and M. Head-Gordon, J. Phys. Chem. 100, 6131 (1996).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... results.15.6
M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... states.15.7
S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 302, 375 (1999).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... desire.22.1
If you have done a geometry optimization and hessian generation in the same input deck using a small basis set, you must make sure you delete the name.stpr41 file since stepper will by default use that hessian and not the one in the name.hess file
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... intensities25.1
Intensities are only computed if the dipole derivatives are available; these are computed by default for most methods that use the finite difference driver routines
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... element.25.2
c.f., "The Elements" by John Emsley, Oxford University Press, (C) 1989, ISBN 0-19-855237-8.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... intensities25.3
The geometry specification at the point where the hessian is computed must be the default ``geometry'' on the current run-time-data-base for the projection to work properly.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... results33.1
c.f., Singh and Kollman, J. Comp. Chem. 7, 718 (1986); M. J. Field, P. A. Bash and M. Karplus, J. Comp. Chem. 11, 700, (1990); J. Gao, ``Methods and Applications of Combined Quantum Mechanical and Molecular Mechanical Potentials.'' In Reviews in Computational Chemistry; K. B. Lipkowitz, D. B. Boyd, Eds.; VCH Publishers: New York; Vol. 7, pp 119-185 (1995); and M. A. Thompson and G. K. Schenter, J. Phys. Chem 99 6374 (1995)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... gradients33.2
The QM/MM method will work with numerical gradients available in NWChem, but it is expected that the performance will not allow any substantive simulations
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... geometry33.3
Any geometry information in the traditional form will be ignored
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... independentD.1
Machine dependence within the input arises from file names, machine specific resources, and differing services provided by the operating system.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... TCGMSGD.2
Where required TCGMSG is automatically built with NWChem.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.