- ... machine5.1
- As returned by util_hostname() which
maps to the output of the command hostname on Unix
workstations.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
separate5.2
- This is because on true shared-memory machines there
is no choice but to allocate GAs from within a shared-memory
segment, which is managed differently by the operating system.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... sets5.3
- Complex objects are stored using a structured
naming convention that is not matched by a simple wild card.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... notation5.4
- The notation
lo:hi:inc denotes the integers lo, lo+inc,
lo+2*inc, ..., hi
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... simulation5.5
- If theory is ``md'' this is not a QM/MM
simulation and will result in an appropriate error
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... charge5.6
- The charge directive, in conjunction with
the charges of atomic nuclei (which can be changed via the geometry
input, cf. Section 6.3), determines the total number of
electrons in the chemical system. Therefore, a charge n
specification removes "n" electrons from the chemical system.
Similarly, charge -n adds "n" electrons.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... processed6.1
- For
periodic systems, there are additional keywords within this
directive (not yet documented), so having a keyword for the group
name is useful.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
contracted7.1
- Generally contracted meaning that the same
primitive, Gaussian functions are contracted into multiple
contracted functions using different contraction coefficients.
Reuse of the radial functions increases the efficiency of integral
generation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
functions7.2
- An
shell is two-component general contraction.
However, the first component specifies an
shell and the second a
shell. Again, reuse of the radial functions increases the efficiency
of integral generation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... Christiansen8.1
- l. F. Pacios and P. A. Christiansen,
J. Chem. Phys. 82, 2664 (1985)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... Kroll9.1
- M. Douglas and N. M. Kroll, Ann. Phys. (N.Y.) 82,
89 (1974)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... Hess9.2
- B.A. Hess, Phys. Rev. A 32,
756 (1985); 33, 3742 (1986)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... Dyall9.3
- K. G. Dyall,
J. Chem. Phys. 100, 2118 (1994)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... level9.4
- K. G. Dyall,
J. Chem. Phys. 106, 9618 (1997); K. G. Dyall and T. Enevoldsen,
J. Chem. Phys. 111, 10000 (1999).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
operators9.5
- B.A. Hess, Phys. Rev. A 32, 756 (1985)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... operators9.6
- B.A. Hess, Phys. Rev. A 33, 3742 (1986)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...osch9.7
- O.D. Häberlen, N. Rösch,
Chem. Phys. Lett. 199, 491 (1992)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
10.1
- The cyclic permutation
maps the
ordered list 6 7 8 9 into 9 6 7 8.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... SCF10.2
- This can be seen by considering
a one-electron approximation to the closed-shell RHF Hessian in
canonical orbitals,
. Similarly, the level shift
should be twice as large for UHF.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... scheme11.1
- B.I. Dunlap,
J.W.D. Connolly and J.R. Sabin, J. Chem. Phys. 71, 4993 (1979)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
Alder11.2
- D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... subspace11.3
- P. Pulay, Chem. Phys.
Lett. 73, 393 (1980) and P. Pulay, J. Comp. Chem. 3,
566 (1982)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...Level-Shifting11.4
- M.F. Guest and
V.R. Saunders, Mol. Phys. 28, 819 (1974)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... components11.5
- The subroutine
for the Lebedev grid was derived from a routine supplied by M. Causà
of the University of Torino and from the grid points supplied by
D.N. Laikov from Moscow State University.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... below.11.6
-
V.I. Lebedev and D.N. Laikov, Doklady Mathematics 366, 741
(1999).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... scheme14.1
- B.I. Dunlap,
J.W.D. Connolly and J.R. Sabin, J. Chem. Phys. 71, 4993 (1979)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... systems14.2
- J.E. Jaffe, A.C. Hess,
J. Chem. Phys. 105, 10983 (1996)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
Alder14.3
- D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... scheme14.4
- H.J. Monkhorst and J.D. Pack,
Phys. Rev. B.
13, 5188 (1976).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... shifting''14.5
- M.F. Guest and
V.R. Saunders, Mol. Phys. 28, 819 (1974)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... desire.20.1
- If you have done a geometry
optimization and hessian generation in the same input deck using a
small basis set, you must make sure you delete the name.stpr41
file since stepper will by default use that hessian and not the one in
the name.hess file
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... intensities22.1
- Intensities are only computed if the dipole
derivatives are available; these are computed by default for most
methods that use the finite difference driver routines
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... element.22.2
- c.f., "The
Elements" by John Emsley, Oxford University Press, (C) 1989, ISBN
0-19-855237-8.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
intensities22.3
- The geometry specification at the point where the
hessian is computed must be the default ``geometry'' on the current
run-time-data-base for the projection to work properly.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... results29.1
- c.f., Singh and Kollman, J. Comp. Chem.
7, 718 (1986); M. J. Field, P. A. Bash and M. Karplus, J.
Comp. Chem. 11, 700, (1990); J. Gao, ``Methods and
Applications of Combined Quantum Mechanical and Molecular Mechanical
Potentials.'' In Reviews in Computational Chemistry;
K. B. Lipkowitz, D. B. Boyd, Eds.; VCH Publishers: New York;
Vol. 7, pp 119-185 (1995); and M. A. Thompson and G. K. Schenter, J.
Phys. Chem 99 6374 (1995)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... gradients29.2
- The QM/MM method will work with numerical
gradients available in NWChem, but it is expected that the
performance will not allow any substantive simulations
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... geometry29.3
- Any geometry information in the
traditional form will be ignored
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
31.1
- See reference on Lie Groups, e.g. reference (P.J. Olver,
Equivalence, Invariants, and Symmetry, 1st ed. Cambridge University Press,
New York, 1995), for a definition of a quotient space and a definition of the
orthogonal group
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... independentD.1
- Machine
dependence within the input arises from file names, machine
specific resources, and differing services provided by the operating system.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... TCGMSGD.2
- Where required
TCGMSG is automatically built with NWChem.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.